Blowing Up Pbar Emittances

Mike Syphers Accelerator Division

Recent history ...

- Recycler works hard to produce small emittance beams (3D)
- As Recycler delivers more intense, smaller antiproton bunches, often see degradation of proton beam lifetime
- Traditionally, considered Tevatron operation as "weak" antiproton bunches in presence of "strong" proton bunches
- Acting as a lens, the strength of the beam-beam interaction of pbars on protons now can be essentially the same as for protons on pbars
- However, the Tevatron beams do have different sizes, and the effects are nonlinear; this influences the tune spread of the two beams differently

Particle Lifetimes

~100 stores since last long shutdown

Earlier History ...

- In early Tevatron running (1980's) and in Sp \overline{p} S, found that intense proton beams affected the antiproton beam lifetime due to beam-beam interactions when total 'tune shift parameter' $\xi \sim 0.025$
 - The tune shift parameter given by: $\xi = \frac{3r_oN}{2\epsilon}$
 - note: 6x6 --> 12 "interactions" per turn, producing $\xi \sim$ 0.002 per interaction
 - the reason for helical orbits

Tune Diagram

Resonance Lines in tune space indicate potential problem spots for operation

Tev working point:

~ 20.59, 20.58

Tune Diagram

Resonance Lines in tune space indicate potential problem spots for operation

Tev working point:

~ 20.59, 20.58

Tune Diagram

Resonance Lines in tune space indicate potential problem spots for operation
(through 8th order shown)

Tev working point:

~ 20.59, 20.58

0.2

0.4

8.0

21

0.6

hor tune

width ~ 0.025

Monday, April 28, 2008

0.0

The Beam-Beam Force

- Force, and its derivative (gradient), vary with position
- Gradients determine oscillation frequency ...

Displacement from center of bunch:

r/σ

The Beam-Beam Tune "shift"

Due to nonlinear nature of the perturbation, "the tune" of a particle only has meaning in average sense,

small amplitudes, stay within center of other beam; large amplitudes, most of time "outside" of other beam

$$\xi = \frac{3r_o N}{2\epsilon}$$

If unequal transverse sizes, the two interacting beams will have unequal tune distributions

Tune shift vs. amplitude

The Beam-Beam Tune "shift"

Due to nonlinear nature of the perturbation, "the tune" of a particle only has meaning in average sense,

small amplitudes, stay within center of other beam; large amplitudes, most of time "outside" of other beam

$$\xi = \frac{3r_o N}{2\epsilon}$$

If unequal transverse sizes, the two interacting beams will have unequal tune distributions

Tune shift vs. amplitude

The Beam-Beam Tune "shift"

Due to nonlinear nature of the perturbation, "the tune" of a particle only has meaning in average sense,

small amplitudes, stay within center of other beam; large amplitudes, most of time "outside" of other beam

$$\xi = \frac{3r_o N}{2\epsilon}$$

If unequal transverse sizes, the two interacting beams will have unequal tune distributions

Tune shift vs. amplitude

A Numerical Example

$$\bullet$$
 Let's use: $\xi = \frac{3(1.5 \times 10^{-18})(250 \times 10^9)}{2 \cdot 14\pi \ 10^{-6}} = 0.0125$ (due to p)

$$\bar{\xi} = \frac{3(1.5 \times 10^{-18})(70 \times 10^9)}{2 \cdot 4\pi \ 10^{-6}} = 0.0125$$
 (due to pbar)

Note: 2 IR's make total of 0.025

$$\sigma_{ar{p}}/\sigma_p = \sqrt{rac{4}{14}} pprox rac{1}{2}$$

Cold Pbars...

Now, increase Antiproton beam size...

- $\ensuremath{\text{@}}$ Take above condition, and imagine doubling the antiproton emittance to 8π mm-mrad
- Results:

$$\bar{\xi} = \frac{3(1.5 \times 10^{-18})(70 \times 10^9)}{2 \cdot 8\pi \ 10^{-6}} = 0.0062 = \xi/2$$

$$\sigma_{\bar{p}}/\sigma_p = \sqrt{\frac{8}{14}} \approx \frac{3}{4}$$

Look at new tune distributions...

After the increase...

Now, roughly equal tune spreads in both beams --> next, center these distributions appropriately

PBJ on Rye...

- Wish to manageably increase the antiproton beam size before initiate collisons
 - o can (sometimes do) mismatch (mis-steer) at injection
 - however, keeping size small through injection/accel can be beneficial
- At high energy, use noise source on plates of pbar damper system to jostle the pbars transversely (PBJ), increasing amplitudes of particle motion (emittance)
 - emittance increase prop. to time left on
- Needs calibration and a more automated implementation

Remarks

- No longer in weak-strong regime; must consider effects of pbars on the proton beam
- As push up pbar intensities and optimize integrated luminosity, need to "tailor" the beam sizes, intensities in order to land in reasonable regions of tune space
- Final adjustments to antiproton emittances can be beneficial at high energy; gaining experience with new technique using damper system (PBJ)
- Attempting to develop algorithm/recipe to make appropriate adjustments reproducible and reliable
- Reducing overall tune spreads may allow for higher proton bunch intensities as well

Then and now...

$$\mathcal{L} = \frac{3f_0 \gamma N(B\bar{N})}{\beta^* (\epsilon + \bar{\epsilon})} \cdot \mathcal{H}$$

Late 1980's...

$$= \frac{3 \cdot 47,750 \cdot (800/0.938) \cdot (50 \times 10^{9}) \cdot (20 \times 10^{10})}{50 \cdot (2 \times 20\pi \times 10^{-4})} \cdot 0.6 = 10^{30} \text{ cm}^{-2} \text{sec}^{-1}$$

$$\xi = \frac{3 \cdot 50 \times 10^{9} \cdot (1.5 \times 10^{-16})}{2 \cdot 20\pi \times 10^{-4}} \approx 0.002 \qquad \text{(x6 x 2 --> 0.024)}$$

Today...

$$= \frac{3 \cdot 47,750 \cdot (980/0.938) \cdot (300 \times 10^{9}) \cdot (250 \times 10^{10})}{30 \cdot ((20+4)\pi \times 10^{-4})} \cdot 0.6 = 300 \times 10^{30} \text{ cm}^{-2} \text{sec}^{-1}$$

$$\xi = \frac{3 \cdot 300 \times 10^{9} \cdot (1.5 \times 10^{-16})}{2 \cdot 20\pi \times 10^{-4}} \approx 0.012$$
(x2 --> 0.024)

Estimating the Tune Spread due to Head-On Collisions

- Assume tune varies only with phase space amplitude, as given on previous slide
- Since each amplitude has a corresponding "tune," look at how many particles exist at each amplitude and plot no. particles vs. tune

$$dN = \frac{N}{2\pi\sigma^2} e^{-r^2/2\sigma^2} r \, dr d\theta$$

Tune Distribution

No. of particles per dr at radius r, and thus with tune v:

Example Recipe...

- Suppose we like the conditions of previous slide...
- Given no. of pbars available for a shot, determine no. of protons to use and their emittance to keep $\bar{\xi}=\xi/2$ and tailor pbars accordingly to keep $\sigma_{\bar{p}}/\sigma_p\approx 3/4$

Ex:
$$N=rac{7}{2}ar{N}; \ \epsilon=(3r_o/2\xi)\cdot N; \ ar{\epsilon}=rac{4}{7}\epsilon$$

- Run proton beam at beam-beam limit; if its emittance is already too large, leave as is
 - \bullet i.e., make $\xi \leq 0.012$

Initial Luminosity vs. Stash Size

Assumes 80% make it to collisions, and that the conditions above "optimize" the luminosity lifetime